http://zaletov.net
Решения физики online


Физика - Чертов А.Г.

    В настоящий момент в базе находятся следующие задачи(номера задач соответствуют задачнику). Задачи, помеченные светло-зеленым цветом, можно купить. Базовая цена 30 руб. Подробней об оплате

Динамика вращательного движения твердого тела вокруг неподвижной оси

Ч_3.1. Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.

30 руб.купить

Ч_3.2. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс.

30 руб.купить

Ч_3.3. Два шара массами m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7, а, б. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь. лярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины.»«

30 руб.купить

Ч_3.7. Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на а=20 см от одного из его концов.

30 руб.купить

Ч_3.8. Вычислить момент инерции J проволочного прямоугольника со сторонами а=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линей ной плотностью ?=0,1 кг/м.

30 руб.купить

Ч_3.9. Два однородных тонких стержня: АВ длиной l1=40 см • и массой m1=900 г и CD длиной l2=40 см и массой l2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси 00', проходящей через конец стержня АВ параллельно стержню CD.

30 руб.купить

Ч_3.10. Решить предыдущую задачу для случая, когда ось 00' проходит через точку А перпендикулярно плоскости чертежа.

30 руб.купить

Ч_3.11. Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки.»«

30 руб.купить

Ч_3.12. На концах тонкого однородного стержня длиной l и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стер и проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.

30 руб.купить

Ч_3.13. Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.

30 руб.купить

Ч_3.14. Определить момент инерции J кольца массой т=50 г и радиусом R=10 см относительно оси, касательной к кольцу.

30 руб.купить

Ч_3.15. Диаметр диска d=20 см, масса т=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.

30 руб.купить

Ч_3.16. В однородном диске массой т=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.

30 руб.купить

Ч_3.17. Найти момент инерции J плоской однородной прямоугольной пластины массой т=800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см.

30 руб.купить

Ч_3.18. Определить момент инерции J тонкой плоской пластины со сторонами а=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью ?=1,2 кг/м2.

30 руб.купить

Ч_3.19. Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное а? ускорения точки В на стержне. Вычисления произвести для следующих случаев

30 руб.купить

Ч_3.20. Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ? и тангенциальное ат ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев:

30 руб.купить

Ч_3.21. Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ?=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М.

30 руб.купить

Ч_3.22. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой т=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=l,8 м за время t=3 с, Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой.

30 руб.купить

Ч_3.23. Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 H, под действием которой вал остановился через t=10 с. Определить коэффициент трения f.

30 руб.купить

Ч_3.24. На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение а оси цилиндра, если цилиндр: 1) сплошной; 2) полый тонкостенный.»«

30 руб.купить

Ч_3.25. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и т2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало.

30 руб.купить

Ч_3.27. Через неподвижный блок массой т=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.

30 руб.купить

Ч_3.28. Шар массой m=10 кг и радиусом R=20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид , где В=4 рад/с2, С= —1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил М в момент времени t=2 с.

30 руб.купить

Ч_3.29. Однородный тонкий стержень массой m1=0,2 кг и длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О (рис. 3.16). В точку А на стержне попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью ?=10 м/с и прилипает к стержню. Масса т2 шарика равна 10 г. Определить угловую скорость W стержня и линейную скорость и нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками А и О: 1) l/2; 2) l/3; 3) l/4.»«

30 руб.купить

Ч_3.30. Однородный диск массой т1= 0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку С (рис. 3.17). В точку, А на образующей диска попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью ?= 10 м/с, и прилипает к его поверхности. Масса т2 шарика равна 10 г. Определить угловую скорость W диска и линейную скорость и точки О на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b: 1) a=b=R; 2) a=R/2, b=R; 3) a=2R/3, b=R/2; 4) a=R/3, b=2R/3.»«

30 руб.купить

Ч_3.31. Человек стоит на скамье Жуковского и ловит рукой мяч массой т=0,4 кг, летящий в горизонтальном направлении со скоростью ?=20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ? начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2?

30 руб.купить

Ч_3.32. Маховик, имеющий вид диска радиусом R=40 см и массой т1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой т2= 0,2 кг (рис. 3.18). Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость ? груз сообщил при этом маховику?

30 руб.купить

Ч_3.33. На краю горизонтальной платформы, имеющей форму диска радиусом R=2м, стоит человек массой т1=80кг. Масса m2 платформы равна 240 кг.Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью ? будет вращаться платформа, если человек будет идти вдоль ее края со скоростью V=2 м/с относительно платформы.

30 руб.купить

Ч_3.34. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой т1=60 кг. На какой угол ? повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса т2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.

30 руб.купить

Ч_3.35. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой n1=6мин-1. На краю платформы стоит человек, масса т которого равна 80 кг. С какой частотой п будет вращаться платформа, если человек перейдет в ,ее центр? Момент инерции J платформы равен 120 кг?м2. Момент инерции человека рассчитывать как для материальной точки.

30 руб.купить

Ч_3.36. В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой т=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг·м2.

30 руб.купить

Ч_3.37. Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус R колеса равен 20 см, его масса т=3 кг. Определить частоту вращения п2 скамьи, если человек повернет стержень на угол 180°? Суммарный момент инерции J человека и скамьи равен 6 кг·м2. Массу колеса можно считать равномерно распределенной по ободу.

30 руб.купить

Ч_3.38. Шарик массой т=100 г, привязанный к концу нити длиной l1=l м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.

30 руб.купить

Ч_3.39. Маховик вращается по закону, выражаемому уравнением ?=A+Bt+Ct2, где A=2 рад, B=32 рад/с, С=—4 рад/с2. Найти среднюю мощность , развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг?м2.

30 руб.купить

Ч_3.40. Маховик вращается по закону, выражаемому уравнением ?=A+Bt+Ct2, где А=2 рад, В=16 рад/с, С=—2 рад/с2. Момент инерции J маховика равен 50 кг-м2. Найти законы, по которым меняются вращающий момент М и мощность N. Чему равна мощность в момент времени t=3 с?

30 руб.купить

Ч_3.41. Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт.

30 руб.купить

Ч_3.42. Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой и=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.

30 руб.купить

Ч_3.43. Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса т груза равна 1 кг и показание динамометра F=24 Н.

30 руб.купить

Ч_3.44. Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?

30 руб.купить

Ч_3.45. Кинетическая энергия Т вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент М силы торможения.

30 руб.купить

Ч_3.46. Маховик, момент инерции J которого равен 40 кг ?м2, начал вращаться равноускоренно из состояния покоя под действием момента силы М=20 Н?м. Вращение продолжалось в течение t= 10 с. Определить кинетическую энергию Т, приобретенную маховиком.

30 руб.купить

Ч_3.47. Пуля массой m=10 г летит со скоростью V=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию Т пули.

30 руб.купить

Ч_3.48. Сплошной цилиндр массой т=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию Г цилиндра.

30 руб.купить

Ч_3.49. Обруч и сплошной цилиндр, имеющие одинаковую массу т=2 кг, катятся без скольжения с одинаковой скоростью ?=5 м/с. Найти кинетические энергии Т1 и Т2 этих тел.

30 руб.купить

Ч_3.50. Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия Т шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.

30 руб.купить

Ч_3.51. Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=l м.

30 руб.купить

Ч_3.52. Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?

30 руб.купить

Ч_3.53. Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол ?=60° от положения равновесия и отпустили. Определить линейную скорость ? нижнего конца стержня в момент прохождения через положение равновесия.

30 руб.купить

Ч_3.54. Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О на стержне. Стержень отклонили от положения равновесия на угол а и отпустили (см. рис. 3.13). Определить угловую скорость со стержня и линейную скорость V точки В на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) а=0, b=l/2, ?=?/3; 2) а=l/3, b=2l/3, ?=?/2; 3) а=l/4, b=l, ?=2?/3.»«

30 руб.купить

Ч_3.55. Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую со и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.

30 руб.купить

Стоимость одной задачи из базы - 30 руб. Решение на заказ - 50 руб.
Примеры решенных задач:

Популярные услуги

Решить математику

Решить физику

Контакты

lab4students@yandex.ru

icq 360-992-443

На этом сайте вы можете заказать расчетные, курсовые, лабораторные работы по указанным дисциплинам.
Hosted by uCoz