В настоящий момент в базе находятся следующие задачи(номера задач соответствуют задачнику). Задачи, помеченные светло-зеленым цветом, можно купить. Базовая цена 30 руб. Подробней об оплате
026. На отрезке L длины 20 см помещен меньший отрезок / длины 10 см. Найти вероятность того, что точка, наудачу поставленная на больший отрезок, попадет также и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. | 30 руб. | купить |
027. На отрезок О А длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, большую, чем L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. | 30 руб. | купить |
028. В круг радиуса R помещен меньший круг радиуса /*. Найти вероятность того, что точка, наудачу брошенная в большой круг, попадет также и в малый круг. Предполагается, что "вероятность попадания точки в круг пропорциональна площади круга и не зависит от его расположения. | 30 руб. | купить |
029. Плоскость разграфлена параллельными прямыми, находящимися друг от друга на расстоянии 2а. На плоскость наудачу брошена монета радиуса г < а. Найти вероятность того, что монета не пересечет ни одной из прямых. | 30 руб. | купить |
030. На плоскость с нанесенной сеткой квадратов со стороной а наудачу брошена монета радиуса г<а/2. Найти вероятность того, что монета не пересечет ни одной из сторон квадрата. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади фигуры и не зависит от ее расположения. | 30 руб. | купить |
031. На плоскость, разграфленную параллельными прямыми, отстоящими друг от друга на расстоянии 6 см, наудачу брошен круг радиуса 1 см. Найти вероятность того, что круг не пересечет ни одной из прямых. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. | 30 руб. | купить |
032. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения. | 30 руб. | купить |
033. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг: а) квадрата; б) правильного треугольника. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга. | 30 руб. | купить |
034. Быстро вращающийся диск разделен на четное число равных секторов, попеременно окрашенных в белый и черный, цвет. По диску произведен выстрел. Найти вероятность того, что пуля попадет в один из белых секторов. Предполагается, что вероятность попадания пули в плоскую фигуру пропорциональна площади этой фигуры* | 30 руб. | купить |
035. На отрезке О А длины L числовой оси Ох наудачу поставлены две точки: В(х) и С (у), причем у>х. (Координата точки С для удобства дальнейшего изложения обозначена через у). Найти вероятность того, что длина отрезка ВС меньше длины отрезка О В (рис. 1, а). Предполагается, что вероятность попадания точки на отрезок пропорциональна длине это го отрезка и не зависит от его расположения на число вой оси. | 30 руб. | купить |
036. На отрезке О А длины L числовой оси Ох наудачу поставлены две точки В(х) и С (у). Найти вероятность того, что длина отрезка ВС меньше расстояния от точки О до ближайшей к ней точке. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. | 30 руб. | купить |
037. На отрезке О А длины L числовой оси Ох наудачу поставлены две точки: В(х) и С (у), причем у^х. Найти вероятность того, что длина отрезка ВС окажется меньше, чем L/2. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. | 30 руб. | купить |
038. На отрезке О А длины L числовой оси Ох наудачу поставлены две точки: В(х) и С (у). Найти вероятность того, что длина отрезка ВС окажется меньше, чем L/2. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. | 30 руб. | купить |
039. Задача Бюффона (французский естествоиспытатель XVIII в.). Плоскость разграфлена параллельными прямыми, отстоящими друг от друга на расстоянии 2а. На плоскость наудачу бросают иглу длины 2/ (/ < а). Найти вероятность того, что игла пересечет какую-нибудь прямую. | 30 руб. | купить |
040. На отрезке О А длины L числовой оси Ох наудачу поставлены две точки: В(х) и С (у). Найти вероятность а\ | 30 руб. | купить |
041. В сигнализатор поступают сигналы от двух устройств, причем поступление каждого из сигналов равно-возможно в любой момент промежутка времени длительностью Т. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше t (t < Т). Найти вероятность того, что сигнализатор срабатывает за время Т, если каждое из устройств пошлет по одному сигналу. | 30 руб. | купить |
042. Задача о встрече. Два студента условились встретиться в определенном месте между 12 и 13 часами дня. Пришедший первым ждет второго в течение 1/4 часа, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов). | 30 руб. | купить |
043. Найти вероятность того, что из трех наудачу взятых отрезков длиной не более L можно построить треугольник. Предполагается, что вероятность попадания точки в пространственную фигуру пропорциональна объему фигуры и не зависит от ее расположения. | 30 руб. | купить |
044. Наудачу взяты два положительных числа х и у9 каждое из которых не превышает двух. Найти вероятность того, что произведение ху будет не больше единицы, а частное у/х не больше двух. | 30 руб. | купить |
045. Наудачу взяты два положительных числа х и у9 каждое из которых не превышает единицы. Найти вероятность того, что сумма х + у не превышает единицы, а произведение ху не меньше 0,09. | 30 руб. | купить |